Bacterial Inclusion Bodies Contain Amyloid-Like Structure

by: apryl
September 8, 2008
DOI: 10.4016/7266.01
22758 views
URL
Embed
Share

Please describe the reason for abuse:



Linked profiles:
Lei Wang
Article:
Peer-Reviewed Paper, View Original
Description:
Protein aggregation is a process in which identical proteins self-associate into imperfectly ordered macroscopic entities. Such aggregates are... » More
Citation:
PLoS Biol. 2008 Aug 5; 6(8):e195
Authors:
David Eisenberg, Samir K Maji, Roland Riek, Michael R Sawaya, Lei Wang

Loading comments
  1. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426: 900-904.
  2. Dobson CM (2003) Protein folding and misfolding. Nature 426: 884-890.
  3. Kelly JW (2005) Attacking amyloid. N Engl J Med 352: 722-723.
  4. Ventura S (2005) Sequence determinants of protein aggregation: tools to increase protein solubility. Microb Cell Fact 4: 11.
  5. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273: 729-739.
  6. Kirschner DA, Abraham C, Selkoe DJ (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci U S A 83: 503-507.
  7. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435: 773-778.
  8. Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435: 844-848.
  9. Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B (2005) 3D structure of Alzheimer's amyloid-beta(1–42) fibrils. Proc Natl Acad Sci U S A 102: 17342-17347.
  10. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447: 453-457.
  11. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD (2002) A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99: 16742-16747.
  12. LeVine H (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309: 274-284.
  13. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid by congo red spectral shift assay. Methods Enzymol 309: 285-305.
  14. Rousseau F, Schymkowitz J, Serrano L (2006) Protein aggregation and amyloidosis: confusion of the kinds. Curr Opin Struct Biol 16: 118-126.
  15. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3: R9-23.
  16. Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24: 179-185.
  17. Freedman RB, Wetzel R (1992) Protein engineering. Curr Opin Biotechnol 3: 323-325.
  18. Chrunyk BA, Evans J, Lillquist J, Young P, Wetzel R (1993) Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. J Biol Chem 268: 18053-18061.
  19. Rinas U, Bailey JE (1992) Protein compositional analysis of inclusion bodies produced in recombinant Escherichia coli. Appl Microbiol Biotechnol 37: 609-614.
  20. Przybycien TM, Dunn JP, Valax P, Georgiou G (1994) Secondary structure characterization of beta-lactamase inclusion bodies. Protein Eng 7: 131-136.
  21. Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347: 1025-1037.
  22. Ignatova Z, Krishnan B, Bombardier JP, Marcelino AM, Hong J (2007) From the test tube to the cell: exploring the folding and aggregation of a beta-clam protein. Biopolymers 88: 157-163.
  23. Speed MA, Wang DI, King J (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 14: 1283-1287.
  24. King J, Haase-Pettingell C, Robinson AS, Speed M, Mitraki A (1996) Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J 10: 57-66.
  25. Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G (2005) Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24: 2491-2498.
  26. Scheufler C, Sebald W, Hulsmeyer M (1999) Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol 287: 103-115.
  27. Allendorph GP, Vale WW, Choe S (2006) Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc Natl Acad Sci U S A 103: 7643-7648.
  28. Breithaupt C, Schubart A, Zander H, Skerra A, Huber R (2003) Structural insights into the antigenicity of myelin oligodendrocyte glycoprotein. Proc Natl Acad Sci U S A 100: 9446-9451.
  29. Clements CS, Reid HH, Beddoe T, Tynan FE, Perugini MA (2003) The crystal structure of myelin oligodendrocyte glycoprotein, a key autoantigen in multiple sclerosis. Proc Natl Acad Sci U S A 100: 11059-11064.
  30. Hoshino M, Katou H, Hagihara Y, Hasegawa K, Naiki H (2002) Mapping the core of the beta(2)-microglobulin amyloid fibril by H/D exchange. Nat Struct Biol 9: 332-336.
  31. Rousseau F, Serrano L, Schymkowitz JW (2006) How evolutionary pressure against protein aggregation shaped chaperone specificity. J Mol Biol 355: 1037-1047.
  32. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22: 1302-1306.
  33. Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103: 4074-4078.
  34. Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4: 27.
  35. Sambashivan S, Liu Y, Sawaya MR, Gingery M, Eisenberg D (2005) Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437: 266-269.
  36. Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400: 693-696.
  37. Monsellier E, Chiti F (2007) Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep 8: 737-742.
  38. Richardson JS, Richardson DC (2002) Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci U S A 99: 2754-2759.
  39. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95: 6448-6453.
  40. Chimon S, Ishii Y (2005) Capturing intermediate structures of Alzheimer's beta-amyloid, Abeta(1–40), by solid-state NMR spectroscopy. J Am Chem Soc 127: 13472-13473.
  41. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300: 486-489.
  42. Gonzalez-Montalban N, Villaverde A, Aris A (2007) Amyloid-linked cellular toxicity triggered by bacterial inclusion bodies. Biochem Biophys Res Commun 355: 637-642.
  43. Gonzalez-Montalban N, Carrio MM, Cuatrecasas S, Aris A, Villaverde A (2005) Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. J Biotechnol 118: 406-412.
  44. Maji SK, Schubert D, Rivier C, Lee S, Rivier JE (2008) Amyloid as a depot for the formulation of long-acting drugs. PLoS Biol 6doi:10.1371/journal.pbio.0060017.
  45. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297: 353-356.
  46. Glabe CC (2005) Amyloid accumulation and pathogenesis of Alzheimer's disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcell Biochem 38: 167-177.
  47. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10: S10-17.
  48. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10: 524-530.
  49. Salzmann M, Wider G, Pervushin K, Senn H, Wuthrich K (1999) TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J Am Chem Soc 121: 844-848.
  50. Bracken C, Palmer AG, Cavanagh J (1997) (H)N(COCA)NH and HN(COCA)NH experiments for 1H-15N backbone assignments in 13C/15N-labeled proteins. J Biomol NMR 9: 94-100.
  51. Guntert P, Dotsch V, Wider G, Wuthrich K (1992) Processing of multi-dimensional NMR data with the new software PROSA. J Biomol NMR 2: 619-629.
  52. Keller R (2004) . The computer aided resonance assignment tutorialCantina Verlag. Goldau (Switzerland).
  53. Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14: 892-893.
  54. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR (2005) Protein identification and analysis tool on the EXPASY server. The proteomics protocols handbook: 571-607Humana Press. Clifton (New Jersey).
  55. Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179: 125-142.