SCIENCE OF THE WINTER OLYMPICS: BLADE RUNNERS

submitted by: nsf

The U.S. speed skating team has two best hopes against a powerful South Korean team that took three- of-a-possible-four golds in Torino: Apolo Ohno and J.R. Celski--an 18-year-old World Champion in his first Olympics. Speed skating is all about force and movement--what, in physics, are known as Newton's First Three Laws of Motion. Celski and physicist George Tuthill of Plymouth State University explain.

SCIENCE OF THE WINTER OLYMPICS: AIR LIFT

submitted by: nsf

This year, the U.S. team is a serious medal contender in Nordic Combined, a sport that combines ski jumping with cross-country skiing. U.S. hopefuls Todd Lodwick and Bill Demong, along with NSF-funded scientists Paul Doherty, senior scientist at the Exploratorium in San Francisco, and physicist George Tuthill of Plymouth State University explain the principles of physics that are used to get high scores in the long jumps.

SCIENCE OF THE WINTER OLYMPICS: SUIT UP

submitted by: nsf

Olympic athletes have long worn special competition clothing to gain an edge. Science and technology continue to improve on what they wear. Hear from Olympians Chad Hedrick, Steve Holcomb and Erin Hamlin, and Melissa Hines, the director of the Cornell University Center for Materials Research, about how the latest in competition suits will go to work for Team USA in Vancouver.

SCIENCE OF THE WINTER OLYMPICS: SNOWBOARDING

submitted by: nsf

The stakes are high for the snowboarders in Vancouver as they try to master new tricks to unseat the star of Torino, American Shaun White. But to get "max air" off the half-pipe without losing their balance, they might want to check out this experiment that Paul Doherty, a senior scientist at the Exploratorium in San Francisco, cooked up, using a skateboard and a glass of water.

SCIENCE OF THE WINTER OLYMPICS: SLAPSHOT PHYSICS

submitted by: nsf

One of the most popular team sports in the Winter Olympics is hockey. More than just a physical game, for scientists, it's a showcase for physics on ice--especially when it comes to the slapshot. Three-time Olympian Julie Chu, Thomas Humphrey, a senior scientist at the Exploratorium in San Francisco, and Katharine Flores, an associate professor in the department of materials science and engineering at Ohio State University, break down the science of hockey's hardest shot.

SCIENCE OF THE WINTER OLYMPICS: SCIENCE OF SKIS

submitted by: nsf
In skiing events like the downhill, slalom or ski jump it's often the skis that are bound to an athlete's feet--and the materials used to make them--that give these athletes an edge over the competition. U.S. Ski Team members Julia Mancuso, Ted Ligety and Scott Macartney, and Katharine Flores, an associate professor in the Department of Materials Science and Engineering at Ohio State University, explain how the materials used to make skis play a vital role in their performance on the...

SCIENCE OF THE WINTER OLYMPICS: SCIENCE OF SKATES

submitted by: nsf

The ice skates worn by this year's hockey players, figure skaters and speed skaters are vastly different from what were once used. Melissa Hines, the Director of the Cornell University Center for Materials Research, and Sam Colbeck, a retired scientist from the U.S. Army Cold Regions Lab, explain how innovations in boot and blade design help skaters perform better than ever before.

SCIENCE OF THE WINTER OLYMPICS: SAFETY GEAR

submitted by: nsf

As athletes push themselves to their limits and sometimes crash or collide, they rely on protective gear to keep them safe. NSF-funded scientists Katharine Flores, an associate professor in the Department of Materials Science and Engineering at Ohio State University, and Melissa Hines, the director of the Cornell University Center for Materials Research, explain the physics of a collision and exactly how this gear, especially safety helmets, works to prevent injury.

SCIENCE OF THE WINTER OLYMPICS: OLYMPICS MOTION

submitted by: nsf

The Olympics are a unique chance to marvel at the physical abilities of these world-class athletes. But what makes them unique? After all, they're made of the same flesh and blood as the rest of us--how did they become Olympians? Dan Fletcher, an associate professor in the Department of Bioengineering at the University of California, Berkeley has some answers.

SCIENCE OF THE WINTER OLYMPICS: MATHLETES

submitted by: nsf

It's been called "the Queen of Sciences"--mathematics. It might not be as obvious in Olympic sports as physics or materials-engineering, but math--from simple arithmetic to calculus--is part of every jump, every spin, every move the athletes make on snow or ice. Mathematician Edward Burger from Williams College explains why math counts.