Phylogeny determined by protein domain content

submitted by: Song
A simple classification scheme that uses only the presence or absence of a protein domain architecture has been used to determine the phylogeny of 174 complete genomes. The method correctly divides the 174 taxa into Archaea, Bacteria, and Eukarya and satisfactorily sorts most of the major groups within these superkingdoms. The most challenging problem involved 119 Bacteria, many of which have reduced genomes. When a weighting factor was used that takes account of difference in genome size...
Authors: Song Yang, Russell f. Doolittle, Philip e. Bourne

Structural Evolution of the Protein Kinase–Like Superfamily

linked profile(s): Phil
submitted by: escheeff
The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase–like superfamily. The comparison of structures revealed a “universal core” domain consisting only of...
Authors: Eric d Scheeff, Philip e Bourne