Cell-Cell Communication in Bacteria: Part 2: Vibrio Cholerae Quorum Sensing and Developing Novel Antibiotics (19:49)

submitted by: scivee-team
Bacteria, primitive single-celled organisms, communicate with chemical languages that allow them to synchronize their behavior and thereby act as enormous multi-cellular organisms. This process is called quorum sensing and it enables bacteria to successfully infect and cause disease in plants, animals, and humans. Investigations of the molecular mechanisms underlying quorum sensing are leading to the development of novel strategies to interfere with quorum sensing. These strategies form the...

Cytoskeletal Motor Proteins: Part 3: Mining the Genome for Mitotic Treasures (33:41)

submitted by: scivee-team
The third (last) part of the lecture is on mitosis, the process by which chromosomes are aligned and then segregated during cell division. I will describe our efforts to find new proteins that are important for mitosis through a high throughput RNAi screen. I will discuss how we technically executed the screen and then focus on new proteins that are we discovered that are involved in generating the microtubules that compose the mitotic spindle. I also discuss the medical importance of...

Cytoskeletal Motor Proteins: Part 2: Single Molecule Approaches for Understanding Molecular Motors (25:20)

submitted by: scivee-team

In the second part of this lecture, I will discuss our laboratories current work on the mechanism of movement by dynein, a motor protein about which we still know very little. This is a research story in progress, where some advances have been made. However, much remains to be done in order to understand how this motor works.

Cell Organization & Cell Motility: Part 3: Principles of Cellular Organization: The Universal Cytoskeleton (29:17)

submitted by: scivee-team
In the third part, I discuss how the complex shapes of cells are created by the cytoskeleton, and I compare and contrast prokaryotes (which have actin-, tubulin-, and intermediate filament -like proteins) and eukaryotes in this regard. In particular, I speculate that cytoskeletal dynamics were necessary to evolve simple bacterial shapes and cell division, but that additional layers of complexity (namely regulated nucleation and molecular motors) allowed eukaryotes to evolve more complex...

Cell Organization & Cell Motility: Part 2: Force Generation by Actin Assembly: Theories and Experiments (46:16)

submitted by: scivee-team

The second part is devoted to understanding how the polymerization of actin can produce, which is a current area of research in our laboratory. Here, I cover theories for how polymerization might be used to produce forces, and our efforts to test these models using optical traps, atomic force microscopes, and nanofabricated devices.

How to Manage Your Stress

submitted by: knowledgeocity

Knowledgeocity.com presents Stress Management as a part of the Lifestyle Learning Series. This lesson covers how to bring down your stress level at work and in life. For the full training video course and much more, visit Knowledgeocity.com